Machine learning techniques for mitoses classification
نویسندگان
چکیده
منابع مشابه
Text Classification Using Machine Learning Techniques
Automated text classification has been considered as a vital method to manage and process a vast amount of documents in digital forms that are widespread and continuously increasing. In general, text classification plays an important role in information extraction and summarization, text retrieval, and questionanswering. This paper illustrates the text classification process using machine learn...
متن کاملMusic Genre Classification Using Machine Learning Techniques
Music is categorized into subjective categories called genres. Humans have been the primary tool in attributing genre-tags to songs. Using a machine to automate this classification process is a more complex task. Machine learning excels at deciphering patterns from complex data. We aimed to apply machine learning to the task of music genre tagging using eight summary features about each song, a...
متن کاملEEG Classification based on Machine Learning Techniques
The main issue to build applicable Brain-Computer Interfaces is the capability to classify the electroencephalograms (EEG). During the last decade, researchers developed lots of interests in this field. The purpose behind this research is to improve a model for EEG signals analysis. Filtration of EEG Signals is essential to remove artifacts. Otherwise, wavelet transform was used to extract feat...
متن کاملMachine Learning Classification Techniques: A Comparative Study
Machine learning is the study of computer algorithms that improve automatically with experience. In other words it is the ability of the computer program to acquire or develop new knowledge or skills from examples for optimising the performance of a computer or a mobile device. In this paper we apply machine learning techniques Bayes network, Logistic Regression, Decision Stump, J48, Random For...
متن کاملMusic Genre Classification using Machine Learning Techniques
Categorizing music files according to their genre is a challenging task in the area of music information retrieval (MIR). In this study, we compare the performance of two classes of models. The first is a deep learning approach wherein a CNN model is trained end-to-end, to predict the genre label of an audio signal, solely using its spectrogram. The second approach utilizes hand-crafted feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computerized Medical Imaging and Graphics
سال: 2021
ISSN: 0895-6111
DOI: 10.1016/j.compmedimag.2020.101832